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SUMMARY 
 

This paper addresses the question of how to include structural information, for example from a magnetic image, into an airborne 

electromagnetic (AEM) inversion. The kind of information we are interested in is the trend directions seen in the magnetic image, such 

as strike directions of dipping bodies, or the shape of palaeochannels. 

 

A commonly-used technique for including prior information is to use a model covariance matrix, describing the spatial covariance 

between different model points.  However, these covariances are usually constructed from a stationary covariance function which is 

dependent on the vector distance between two points, but is the same for the entire model. However, if a palaeochannel is visible in the 

magnetics, then we know that the AEM model is more likely to be similar along the channel than away from the channel. We therefore 

wish to construct a covariance matrix that can take curved and branching structure into account. 

 

We construct an inhomogeneous covariance matrix from an image by breaking the image up into multiple windows, and then computing 

an elliptical distance metric in each window, such that distances in the direction of the features in that window are shorter than distances 

across those features. This collection of distance metrics then allows us to compute, between any two points in the image, a shortest 

path that curves to follow the directions of trends in the image. Using this curved-path distance allows us to generate a covariance 

matrix that encourages the inverted model to follow the trends in the image. 
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INTRODUCTION 
 

Geophysical inversions are usually non-unique, meaning that many different models could equally well fit the observed data. In a 

Bayesian setting, in order to overcome the problem of non-uniqueness, we include prior information, such as knowledge of the spatial 

correlation properties of the physical property whose values we are trying to infer, which has the effect of imposing smoothness 

constraints on the model. Geostatistical methods can be used to estimate parameters for model priors, typically via prior covariance 

matrices (see e.g. Kitanidis, 2010; Oh and Kwon, 2014). 

 

The goal of the work described here is to incorporate more complex spatial constraints on the model. In particular, we may have an 

image covering the same area as the model we are trying to invert, such as an airborne magnetic image, or a seismic section. We know 

that the model ought to exhibit similar spatial structure to what is visible in the image, simply because the same earth that our model is 

trying to describe has generated the image. We therefore seek a method of generating spatial constraints, in particular a prior covariance 

matrix, from an image, such that random models drawn from a probability distribution function described by the covariance matrix 

show similar spatial features to those in the image. 

 

One method for imposing similarity of two models, used in joint inversion of two different data sets, is to use a cross gradient 

technique (Gallardo et al., 2005) where the inversion algorithm minimises an objective function including the cross-product of the 

gradients of each of the two models. Where the gradients are parallel, which happens when the spatial structure is the same, the cross-

product goes to zero. 

 

Our method, following work by Boisvert (2010) divides the image into cells, in each of which a local anisotropy is estimated. This 

allows a distance function to be defined, whose shortest paths follow the directions of spatial structure in the image. Using this 

distance function to compute a covariance matrix yields a prior probability distribution function, samples from which display the 

spatial patterns of the original image. 

 

METHOD AND RESULTS 

 
A commonly-used way of incorporating prior information into a Bayesian inversion is to express the prior as a multivariate Gaussian, 

with a mean vector and a covariance matrix (Mosegaard and Tarantola, 2002). The log posterior probability distribution for the model 

parameters, in the case of Gaussian noise in the data, then has the form, 
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Here m is the model parameter vector, f(m) is the predicted data generated by our forward model, dobs is the observed data, CD is the 

data covariance matrix, mprior is a prior model parameter vector, and CM is the prior model covariance matrix. When the model is in 

the form of a 2D grid, like the conductivity of a layer in an airborne electromagnetic inversion, then the covariance matrix CD 

describes spatial smoothness constraints that are applied to the inverted model. 

 

The covariance matrix is square, with an entry for each pair of model parameters, describing the covariance between them. In the case 

of a 2D-grid model, the covariance is then a function of the positions of the two model elements. The functional form of the 

covariance describes the smoothness that we expect to see in the model, and normally decreases with distance between the two model 

points. There are several different forms that are used in the geostatistical literature (Oliver et al., 2008) In this work, we use two 

functional forms, the Gaussian, 

 

  
 

and the exponential, 

 

  
 

In these expressions, σk is the standard deviation of the uncertainty on the k’th parameter, D(r1, r2) is a distance (not necessarily 

Euclidean) between r1 and r2, and L is a scale parameter. Error! Reference source not found. illustrates the effect of different 

functional forms: the Gaussian covariance produces smoother models than the exponential covariance; and different scale lengths: the 

larger the scale parameter L, 

the smoother the resulting image. 

 

Apart from the model smoothness, additional 

information on the model spatial structure can be 

included by modifying the distance function. For 

example, in a sedimentary environment, rock 

physical properties are likely to be more similar in 

the plane of the bedding than perpendicular to 

bedding. This information can be included by setting 

a distance measure that makes points in the bedding 

directions closer together than points across the 

bedding. This is illustrated in Error! Reference 

source not found., using an elliptical distance 

measure, with increasing anisotropy.  

 

We would like to be able to impose more general 

geometrical constraints on a model. For example, it 

is very common to have airborne magnetic data 

available, and a magnetic image is often used for 

structural interpretation of the geology. Since the 

magnetic data is produced by the same geological 

features that produced the data we are trying to 

interpret (say AEM, for example) our model should 

have similar spatial features to those seen in the 

magnetic image (or a suitably-processed version of 

the magnetics.) The same would be true to some 

extent of radiometric images, or even aerial 

photographs, though of course these are only directly 

related to shallow features of our model. 

 

We therefore wish to take an arbitrary image which 

we believe has spatial features that our model should 

also exhibit, and derive from the image a covariance 

matrix whose corresponding prior probability 

distribution will yield models with the desired spatial 

properties. To do this, we follow the method of 

Boisvert (2010; Boisvert and Deutsch, 2011) who 

defines a distance function, on an image, whose 

“shortest paths” between points follow curved lines 

parallel to any structure in the image. 

 

 The algorithm has three steps: 

 
Figure 1. Example random images drawn from prior probability 

distributions with (top) Gaussian, and (bottom) exponential functional 

forms, isotropic, Euclidean distance functions, and a range of scale 

lengths. The plots on the left show the functional forms vs distance. 

 
Figure 2. Examples of random images drawn from prior probability 

distributions using covariances with an anisotropic distance measure. 

(top) Gaussian, (bottom) Exponential. 
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1. The image is split into a grid of rectangular cells, and an elliptical 

locally-varying anisotropy (LVA) is estimated within each cell; the 

anisotropy is characterised by the direction and lengths of major and 

minor axes. This anisotropy defines a quadratic metric for measuring 

distance between any two points. 

2. The distance between pairs of points in the desired model is computed, 

using a distance function where shortest-path curves follow the 

anisotropic metric. 

3. A covariance matrix is computed from these distance pairs. This non-

Euclidean distance often results in covariance matrices which are not 

positive definite. Since a covariance matrix has to be positive definite 

to make sense, we find a nearby matrix which is positive definite. See 

Boisvert (2010) for a discussion of methods for correcting the 

covariance matrix. 

 

For the first step, Boisvert (2010) uses a moment of inertia computation to 

estimate the local anisotropy within a cell. We have found this method not be 

effective, so we instead compute a finite-difference gradient over the pixels in 

the cell, and use the variance to estimate the degree of anisotropy, and the mean 

strike direction to estimate the direction of the major axis. This is an aspect that 

requires further work, however. The top panel in Error! Reference source not 

found. shows an example image along with the estimated locally-varying 

 
Figure 3. Each LVA cell has a single defined 

anisotropy, and is split into multiple Dijkstra 

cells with edges joining nodes on the cell 

sides. The shortest path follows these edges, 

and can bend within the LVA cell. 

Dijkstra cell with nodes along the edges

LVA cell with defined anisotropy

ray path

 
Figure 4. Deriving a spatially-structured covariance matrix from an image. (top) An AEM image with locally-varying 

anisotropy (black lines) superimposed. The line direction and length represent the direction of the major axis and the degree 

of anisotropy. (middle) The resulting distance function, represented as distance contours from a selected point, along with 

shortest-path curves for a few chosen points. (bottom) An example random image drawn from the resulting prior 

probability distribution function. 



 

AEGC 2018: Sydney, Australia   4 

 

 

anisotropy. (This image is the time-constant of a best-fit single exponential decay to each sounding of an AEM survey. (data courtesy 

Sandfire Resources Ltd.)) 

 

For computing a curved shortest path, we use a Dijkstra algorithm (Dijkstra, 1959) as implemented in SciPy (Jones et al., 2001). We 

split each LVA cell into several Dijkstra cells with nodes along the boundaries, and edges between the nodes in one cell. The Dijkstra 

algorithm computes the shortest path between two end points, utilising the edges between the Dijkstra nodes (see Figure 3). The 

length of any edge is defined by the quadratic metric,  

 

 
 

where Λ contains the semi-major and semi-minor axis lengths on the diagonal, and R is a rotation matrix, specifying the direction of 

anisotropy. The middle panel in Figure 4 shows an example of the result, as the contoured distance from a given point, along with 

curved shortest paths to a few selected points for illustration. The rather jagged appearance of these paths is caused by the initial local 

anisotropy determination, which could be improved. 

 

Finally, the prior covariance matrix is constructed using either the Gaussian or exponential formula above. A random image can be 

simulated by pre-multiplying an image drawn from an isotropic, unit-variance probability function by the Cholesky decomposition of 

this covariance matrix. An example image is shown in the bottom panel of Figure 4, and it can be seen that, as desired, it shows 

similar spatial structure to the original image. 

 

 

CONCLUSIONS 
 

We have developed a method for generating a prior probability distribution which produces samples that have similar spatial structure 

to the structure in a given image. This was done by splitting the image into cells, and computing a quadratic measure of the locally-

varying anisotropy within each cell. This quadratic function was used as a distance metric, measuring distances depending on the angle 

as well as separation of two points inside the cell. Combining all the cells, a Dijkstra algorithm was used to compute a curved-path 

distance function between any two points in the image, whose shortest distance path followed the image’s spatial structure. Finally, 

this distance measure was used to define the covariance matrix of a 2D Gaussian prior probability distribution function. Models drawn 

from this probability distribution have spatial features similar to the ones in the image. 

 

The most important remaining work is to improve the local estimates of anisotropy. 
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